Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release.
نویسندگان
چکیده
The dopaminergic mechanisms that control reward-motivated behavior are the subject of intense study, but it is yet unclear how, in humans, neural activity in mesolimbic reward-circuitry and its functional neuroimaging correlates are related to dopamine release. To address this question, we obtained functional magnetic resonance imaging (fMRI) measures of reward-related neural activity and [(11)C]raclopride positron emission tomography measures of dopamine release in the same human participants, while they performed a delayed monetary incentive task. Across the cohort, a positive correlation emerged between neural activity of the substantia nigra/ventral tegmental area (SN/VTA), the main origin of dopaminergic neurotransmission, during reward anticipation and reward-related [(11)C]raclopride displacement as an index of dopamine release in the ventral striatum, major target of SN/VTA dopamine neurons. Neural activity in the ventral striatum/nucleus accumbens itself also correlated with ventral striatal dopamine release. Additionally, high-reward-related dopamine release was associated with increased activation of limbic structures, such as the amygdala and the hippocampus. The observed correlations of reward-related mesolimbic fMRI activation and dopamine release provide evidence that dopaminergic neurotransmission plays a quantitative role in human mesolimbic reward processing. Moreover, the combined neurochemical and hemodynamic imaging approach used here opens up new perspectives for the investigation of molecular mechanisms underlying human cognition.
منابع مشابه
Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase
The premenstrual phase of the menstrual cycle is associated with marked changes in normal and abnormal motivated behaviors. Animal studies suggest that such effects may result from actions of gonadal hormones on the mesolimbic dopamine (DA) system. We therefore investigated premenstrual changes in reward-related neural activity in terminal regions of the DA system in humans. Twenty-eight health...
متن کاملAbnormal Striatal BOLD Responses to Reward Anticipation and Reward Delivery in ADHD
Altered reward processing has been proposed to contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The neurobiological mechanism underlying this alteration remains unclear. We hypothesize that the transfer of dopamine release from reward to reward-predicting cues, as normally observed in animal studies, may be deficient in ADHD. Functional magnetic resonance imaging (...
متن کاملImprovement of brain reward abnormalities by antipsychotic monotherapy in schizophrenia.
CONTEXT Schizophrenic symptoms are linked to a dysfunction of dopamine neurotransmission and the brain reward system. However, it remains unclear whether antipsychotic treatment, which blocks dopamine transmission, improves, alters, or even worsens the reward-related abnormalities. OBJECTIVE To investigate changes in reward-related brain activations in schizophrenia before and after antipsychot...
متن کاملVentral striatal activation during reward processing in subjects with ultra-high risk for schizophrenia.
BACKGROUND Early dysfunction of the brain reward system in schizophrenia might be already recognized in the prodromal phase of this illness. We used functional magnetic resonance imaging to assess the blood oxygen level-dependent response in the ventral striatum (VS) of subjects with ultra-high risk for psychosis during the presentation of reward-indicating and loss-indicating stimuli. METHOD...
متن کاملNovelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: Evidence from high-resolution fMRI
Reward and novelty are potent learning signals that critically rely on dopaminergic midbrain responses. Recent findings suggest that although reward and novelty are likely to interact, both functions may be subserved by distinct neuronal clusters. We used high-resolution functional magnetic resonance imaging (fMRI) to isolate neural responses to reward and novelty within the human substantia ni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 52 شماره
صفحات -
تاریخ انتشار 2008